
Continue the Sorting intro
Work on Spellchecker Project

Turn in written problems now.
Thanks to those who have posted links to
dictionaries. We will standardize on one soon.
There will be time in class to work with your
team every day. Do not miss it!

Questions?

Today:
◦ Work on Spellchecker
◦ Continue the Sorting intro

Day 30 in class
Informal and informational
What does your program do? How does it do it?
Data Structures and algorithms.
Intended audience: Your classmates
◦ Already know what the project is.
◦ Already know Java
◦ Already know the data structures involved.
No more than 7 minutes, including Q&A time.

Since you need to present your final project, it is due at the
beginning of your class time on Day 30. No late days may be used
for this one.
◦ I also don’t want it to interfere with studying for exams

Before you leave today:
◦ UML Class Diagram
◦ Iterative enhancement plan
◦ Commit to your repository
Finish UML diagram and iterative
enhancement plan before midnight tonight.

Finish UML Class Diagram and IEP
today/tonight
Markov partner evaluation survey
Progress on SpellChecker

What do we mean by "sort"?
What is the best sorting algorithm?
The three very simple algorithms
◦ Selection sort
◦ Bubble Sort

Why is it so slow?
◦ Insertion sort
Inversions and movement
Faster algorithms

What should you know/be able to do by the end of
this course?
◦ The basic idea of how each sort works

insertion, selection, bubble, shell, merge
◦ Can write the code on paper in a few minutes

insertion, bubble, selection
perhaps with a minor error or two
not because you memorized it, but because you understand it

◦ What are the best case and worst case orderings of N data
items? For each of these:

Number of comparisons
Number of data movements

Idea: continual swapping
gets results (eventually)
◦ Items “bubble” up

Each adjacent pair of
elements is swapped if
they are out of order.

http://www.cs.ubc.ca/~harriso
n/Java/sorting-demo.html
http://www.geocities.com/silic
onvalley/network/1854/Sort1.
html

n = a.length
for (i = n-1; i > 0; i--){
swapped = false
for (j = 0; j <= i; j++){
if (a[j] > a[j+1]){

swap(a, j, j+1)
swapped = true

}
}
if (!swapped) return;

}

n = a.length
for (i = n-1; i > 0; i--){
swapped = false
for (j = 0; j <= i; j++){
if (a[j] > a[j+1]){

swap(a, j, j+1)
swapped = true

}
}
if (!swapped) return;

}

7 5 8 4 2 9

4 5 2 7 8 9
After outer loop repeats 3 times
(12 comparisons and 21 assignments)

What’s the runtime?
◦ Worst?
◦ Best?
◦ Average?
Extra space?

Runtime measured in:
◦ number of comparisons
◦ number of swaps

Note the one redeeming
feature of bubble sort

n = a.length
for (i = n-1; i > 0; i--){
swapped = false
for (j = 0; j <= i; j++){
if (a[j] > a[j+1]){

swap(a, j, j+1)
swapped = true

}
}
if (!swapped) return;

}

Quiz question asks
for the worst-case
number of
comparisons and
swaps

How does this
differ from bubble
sort?

n = a.length
for (i = 0; i < n-1; i++) {
minPos = 0
// find the smallest
for (j=i+1; j < n; j++){
if (a[j]<a[minPos]){

minPos = j
}
// move it to the start
swap(a, i, minPos)

}

Courtesy of my son Caleb…

for (i=1; i< N; i++)
◦ place a[i] in its correct

position relative to
a[0] …a[i-1]

◦ to do this, we need to
move "right" each of
those items that is
larger than a[i].

Write code together
now.

4 5 7 8 9 2

After outer loop repeats 3 times (7 comps, 10 assns)

7 5 8 4 9 2

What is the runtime?
◦ Best?
◦ Worst?
◦ Average?
◦ Extra space?

Runtime measured in:
◦ number of comparisons
◦ number of swaps

for(i=1; i<a.length; i++){
temp = a[i];
j = i;
while (j>0 && temp<a[j-1])

a[j] = a[j-1];
j--;

a[j] = temp;
}

Demo

Use the results to confirm your answers to
quiz #2-4

